Clickable, Hydrophilic Ligand for fac-[MI(CO)3]+ (M = Re/99mTc) Applied in an S-Functionalized α-MSH Peptide

نویسندگان

  • Benjamin B. Kasten
  • Xiaowei Ma
  • Hongguang Liu
  • Thomas R. Hayes
  • Charles L. Barnes
  • Shibo Qi
  • Kai Cheng
  • Shalina C. Bottorff
  • Winston S. Slocumb
  • Jing Wang
  • Zhen Cheng
  • Paul D. Benny
چکیده

The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction was used to incorporate alkyne-functionalized dipicolylamine (DPA) ligands (1 and 3) for fac-[M(I)(CO)3](+) (M = Re/(99m)Tc) complexation into an α-melanocyte stimulating hormone (α-MSH) peptide analogue. A novel DPA ligand with carboxylate substitutions on the pyridyl rings (3) was designed to increase the hydrophilicity and to decrease in vivo hepatobiliary retention of fac-[(99m)Tc(I)(CO)3](+) complexes used in single photon emission computed tomography (SPECT) imaging studies with targeting biomolecules. The fac-[Re(I)(CO)3(3)] complex (4) was used for chemical characterization and X-ray crystal analysis prior to radiolabeling studies between 3 and fac-[(99m)Tc(I)(OH2)3(CO)3](+). The corresponding (99m)Tc complex (4a) was obtained in high radiochemical yields, was stable in vitro for 24 h during amino acid challenge and serum stability assays, and showed increased hydrophilicity by log P analysis compared to an analogous complex with nonfunctionalized pyridine rings (2a). An α-MSH peptide functionalized with an azide was labeled with fac-[M(I)(CO)3](+) using both click, then chelate (CuAAC reaction with 1 or 3 followed by metal complexation) and chelate, then click (metal complexation of 1 and 3 followed by CuAAC with the peptide) strategies to assess the effects of CuAAC conditions on fac-[M(I)(CO)3](+) complexation within a peptide framework. The peptides from the click, then chelate strategy had different HPLC tR's and in vitro stabilities compared to those from the chelate, then click strategy, suggesting nonspecific coordination of fac-[M(I)(CO)3](+) using this synthetic route. The fac-[M(I)(CO)3](+)-complexed peptides from the chelate, then click strategy showed >90% stability during in vitro challenge conditions for 6 h, demonstrated high affinity and specificity for the melanocortin 1 receptor (MC1R) in IC50 analyses, and led to moderately high uptake in B16F10 melanoma cells. Log P analysis of the (99m)Tc-labeled peptides confirmed the enhanced hydrophilicity of the peptide bearing the novel, carboxylate-functionalized DPA chelate (10a') compared to the peptide with the unmodified DPA chelate (9a'). In vivo biodistribution analysis of 9a' and 10a' showed moderate tumor uptake in a B16F10 melanoma xenograft mouse model with enhanced renal uptake and surprising intestinal uptake for 10a' compared to predominantly hepatic accumulation for 9a'. These results, coupled with the versatility of CuAAC, suggests this novel, hydrophilic chelate can be incorporated into numerous biomolecules containing azides for generating targeted fac-[M(I)(CO)3](+) complexes in future studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 99mTc-tricine-HYNIC-labeled Peptide Targeting the Melanocortin-1 Receptor for Melanoma Imaging

Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target for the development of α-MSH peptide based imaging and therapeutic agents. In this work a new lactam bridge α-MSH analogue was synthesized and radiolabeled with 99mTc via HYNIC chelator and tricine as co-ligand. Also, stability in human serum, receptor bound internalization and tissue biodistribution in tumor bearing nude m...

متن کامل

A 99mTc-tricine-HYNIC-labeled Peptide Targeting the Melanocortin-1 Receptor for Melanoma Imaging

Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target for the development of α-MSH peptide based imaging and therapeutic agents. In this work a new lactam bridge α-MSH analogue was synthesized and radiolabeled with 99mTc via HYNIC chelator and tricine as co-ligand. Also, stability in human serum, receptor bound internalization and tissue biodistribution in tumor bearing nude m...

متن کامل

Cu-Free 1,3-Dipolar Cycloaddition Click Reactions To Form Isoxazole Linkers in Chelating Ligands for fac-[MI(CO)3]+ Centers (M = Re, 99mTc)

Isoxazole ring formation was examined as a potential Cu-free alternative click reaction to Cu(I)-catalyzed alkyne/azide cycloaddition. The isoxazole reaction was explored at macroscopic and radiotracer concentrations with the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core for use as a noncoordinating linker strategy between covalently linked molecules. Two click assembly methods (click, then chelate...

متن کامل

The Value of Technetium-99m Labeled Alpha-Melanocyte- Stimulating Hormone (99mTc-α-MSH) in Diagnosis of Primary and Metastatic Lesions of Malignant Melanoma

Objective(s): Malignant melanoma is the most lethal type of skin cancers with unfavorable prognosis. Alpha-MSH peptide analogues have a high affinity for melanocortine-1 (MC1) receptors on melanocytes overexpressing in malignant melanoma cells. Pre-clinical studies have shown promising results for radiolabeled MSH imaging in this malignancy. The purpose of this study is to assess the diagnostic...

متن کامل

A 99mTc-tricine-HYNIC-labeled Peptide Targeting the Melanocortin-1 Receptor for Melanoma Imaging

Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target for the development of α-MSH peptide based imaging and therapeutic agents. In this work a new lactam bridge α-MSH analogue was synthesized and radiolabeled with 99mTc via HYNIC chelator and tricine as co-ligand. Also, stability in human serum, receptor bound internalization and tissue biodistribution in tumor bearing nude m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014